feat: improved local OCR with Strip & Match distillery detection

- Added comprehensive distillery database (200+ entries)
- Implemented Strip & Match heuristic for fuzzy matching
- Added contextual age detection from distillery lines
- Added whitespace normalization for OCR text
- Disabled local name extraction (too noisy, let Gemini handle it)
- Fixed confidence scale normalization in TastingEditor (0-1 vs 0-100)
- Improved extractName filter (60% letters required)
- Relaxed Fuse.js thresholds for partial matches
This commit is contained in:
2025-12-25 13:14:08 +01:00
parent a1a91795d1
commit afe9197776
17 changed files with 3642 additions and 262 deletions

View File

@@ -0,0 +1,312 @@
/**
* Scanner Utilities
* Cache checking and helper functions for client-side OCR
*/
/**
* Check if Tesseract.js is ready to run
* When online, tesseract will auto-download from CDN, so return true
* When offline, check if files are cached
* @returns Promise<boolean> - true if OCR can run
*/
export async function isTesseractReady(): Promise<boolean> {
if (typeof window === 'undefined') {
return false;
}
// If online, tesseract.js will auto-download what it needs
if (navigator.onLine) {
console.log('[Scanner] Online - tesseract will use CDN');
return true;
}
// If offline, check cache
if (!('caches' in window)) {
console.log('[Scanner] Offline + no cache API - tesseract not ready');
return false;
}
try {
// Check for the core files in cache (matching actual file names in /public/tessdata)
const wasmMatch = await window.caches.match('/tessdata/tesseract-core-simd.wasm');
const langMatch = await window.caches.match('/tessdata/eng.traineddata');
const ready = !!(wasmMatch && langMatch);
console.log('[Scanner] Offline cache check:', { wasmMatch: !!wasmMatch, langMatch: !!langMatch, ready });
return ready;
} catch (error) {
console.warn('[Scanner] Cache check failed:', error);
return false;
}
}
/**
* Extract numeric values from OCR text using regex patterns
*/
export interface ExtractedNumbers {
abv: number | null;
age: number | null;
vintage: string | null;
}
export function extractNumbers(text: string): ExtractedNumbers {
const result: ExtractedNumbers = {
abv: null,
age: null,
vintage: null
};
if (!text) return result;
// Normalize text: lowercase, clean up common OCR mistakes
const normalizedText = text
.replace(/[oO]/g, '0') // Common OCR mistake: O -> 0
.replace(/[lI]/g, '1') // Common OCR mistake: l/I -> 1
.toLowerCase();
// ABV patterns: "43%", "43.5%", "43,5 %", "ABV 43", "vol. 43"
const abvPatterns = [
/(\d{2}[.,]\d{1,2})\s*%/, // 43.5% or 43,5 %
/(\d{2})\s*%/, // 43%
/abv[:\s]*(\d{2}[.,]?\d{0,2})/i, // ABV: 43 or ABV 43.5
/vol[.\s]*(\d{2}[.,]?\d{0,2})/i, // vol. 43
/(\d{2}[.,]\d{1,2})\s*vol/i, // 43.5 vol
];
for (const pattern of abvPatterns) {
const match = normalizedText.match(pattern);
if (match) {
const value = parseFloat(match[1].replace(',', '.'));
if (value >= 35 && value <= 75) { // Reasonable whisky ABV range
result.abv = value;
break;
}
}
}
// Age patterns: "12 years", "12 year old", "12 YO", "aged 12"
const agePatterns = [
/(\d{1,2})\s*(?:years?|yrs?|y\.?o\.?|jahre?)/i,
/aged\s*(\d{1,2})/i,
/(\d{1,2})\s*year\s*old/i,
];
for (const pattern of agePatterns) {
const match = text.match(pattern);
if (match) {
const value = parseInt(match[1], 10);
if (value >= 3 && value <= 60) { // Reasonable whisky age range
result.age = value;
break;
}
}
}
// Vintage patterns: "1990", "Vintage 1990", "Distilled 1990"
const vintagePatterns = [
/(?:vintage|distilled|dist\.?)\s*(19\d{2}|20[0-2]\d)/i,
/\b(19[789]\d|20[0-2]\d)\b/, // Years 1970-2029
];
for (const pattern of vintagePatterns) {
const match = text.match(pattern);
if (match) {
const year = parseInt(match[1], 10);
const currentYear = new Date().getFullYear();
if (year >= 1970 && year <= currentYear) {
result.vintage = match[1];
break;
}
}
}
return result;
}
/**
* Convert an image blob to base64 string
*/
export function imageToBase64(blob: Blob): Promise<string> {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onload = () => {
if (typeof reader.result === 'string') {
resolve(reader.result);
} else {
reject(new Error('Failed to convert image to base64'));
}
};
reader.onerror = reject;
reader.readAsDataURL(blob);
});
}
/**
* Check if the browser is online
*/
export function isOnline(): boolean {
return typeof navigator !== 'undefined' && navigator.onLine;
}
/**
* Options for image preprocessing
*/
export interface PreprocessOptions {
/** Crop left/right edges (0-0.25) to remove bottle curves. Default: 0.05 */
edgeCrop?: number;
/** Target height for resizing. Default: 1200 */
targetHeight?: number;
/** Apply binarization (hard black/white). Default: false */
binarize?: boolean;
/** Contrast boost factor (1.0 = no change). Default: 1.3 */
contrastBoost?: number;
/** Apply sharpening. Default: true */
sharpen?: boolean;
}
/**
* Preprocess an image for better OCR results
*
* Applies:
* 1. Center crop (removes curved bottle edges)
* 2. Resize to optimal OCR size
* 3. Grayscale conversion
* 4. Sharpening (helps with blurry text)
* 5. Contrast enhancement
* 6. Optional binarization
*
* @param imageSource - File, Blob, or HTMLImageElement
* @param options - Preprocessing options
* @returns Promise<string> - Preprocessed image as data URL
*/
export async function preprocessImageForOCR(
imageSource: File | Blob | HTMLImageElement,
options: PreprocessOptions = {}
): Promise<string> {
const {
edgeCrop = 0.05, // Remove 5% from each edge (minimal)
targetHeight = 1200, // High resolution
binarize = false, // Don't binarize by default
contrastBoost = 1.3, // 30% contrast boost
sharpen = false, // Disabled - creates noise on photos
} = options;
// Load image into an HTMLImageElement if not already
let img: HTMLImageElement;
if (imageSource instanceof HTMLImageElement) {
img = imageSource;
} else {
img = await loadImageFromBlob(imageSource as Blob);
}
// Create canvas
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d')!;
// Calculate crop dimensions (remove edges to focus on center)
const cropX = Math.floor(img.width * edgeCrop);
const cropWidth = img.width - (cropX * 2);
const cropHeight = img.height;
// Calculate resize dimensions (maintain aspect ratio)
const scale = targetHeight / cropHeight;
const newWidth = Math.floor(cropWidth * scale);
const newHeight = targetHeight;
canvas.width = newWidth;
canvas.height = newHeight;
// Draw cropped & resized image
ctx.drawImage(
img,
cropX, 0, cropWidth, cropHeight, // Source: center crop
0, 0, newWidth, newHeight // Destination: full canvas
);
// Get pixel data for processing
const imageData = ctx.getImageData(0, 0, newWidth, newHeight);
const data = imageData.data;
// First pass: Convert to grayscale
for (let i = 0; i < data.length; i += 4) {
const r = data[i];
const g = data[i + 1];
const b = data[i + 2];
const gray = 0.2126 * r + 0.7152 * g + 0.0722 * b;
data[i] = data[i + 1] = data[i + 2] = gray;
}
// Apply sharpening using a 3x3 kernel
if (sharpen) {
const tempData = new Uint8ClampedArray(data);
// Sharpen kernel: enhances edges
// [ 0, -1, 0]
// [-1, 5, -1]
// [ 0, -1, 0]
const kernel = [0, -1, 0, -1, 5, -1, 0, -1, 0];
for (let y = 1; y < newHeight - 1; y++) {
for (let x = 1; x < newWidth - 1; x++) {
let sum = 0;
for (let ky = -1; ky <= 1; ky++) {
for (let kx = -1; kx <= 1; kx++) {
const idx = ((y + ky) * newWidth + (x + kx)) * 4;
const ki = (ky + 1) * 3 + (kx + 1);
sum += tempData[idx] * kernel[ki];
}
}
const idx = (y * newWidth + x) * 4;
const clamped = Math.min(255, Math.max(0, sum));
data[idx] = data[idx + 1] = data[idx + 2] = clamped;
}
}
}
// Second pass: Apply contrast enhancement
for (let i = 0; i < data.length; i += 4) {
let gray = data[i];
gray = ((gray - 128) * contrastBoost) + 128;
gray = Math.min(255, Math.max(0, gray));
if (binarize) {
gray = gray >= 128 ? 255 : 0;
}
data[i] = data[i + 1] = data[i + 2] = gray;
}
// Put processed data back
ctx.putImageData(imageData, 0, 0);
console.log('[PreprocessOCR] Image preprocessed:', {
original: `${img.width}x${img.height}`,
cropped: `${cropWidth}x${cropHeight} (${(edgeCrop * 100).toFixed(0)}% edge crop)`,
final: `${newWidth}x${newHeight}`,
sharpen,
contrastBoost,
mode: binarize ? 'binarized' : 'grayscale',
});
return canvas.toDataURL('image/png');
}
/**
* Load an image from a Blob/File into an HTMLImageElement
*/
function loadImageFromBlob(blob: Blob): Promise<HTMLImageElement> {
return new Promise((resolve, reject) => {
const img = new Image();
const url = URL.createObjectURL(blob);
img.onload = () => {
URL.revokeObjectURL(url);
resolve(img);
};
img.onerror = () => {
URL.revokeObjectURL(url);
reject(new Error('Failed to load image'));
};
img.src = url;
});
}